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LETTER TO THE EDITOR 

Acoustic rectification and the virial theorem 

John H Cantrellt 
Cavendish L&”ry, University of Cambridge, Madingley Road, Cambridge CB3 OW, UK 

Received 23 April 1993 

Abstract. Rectification of acoustic waves corresponding to each mode of propagation in 
crystalline solids (modal acoustic. radiation-induced static strains) is predicted directly from 
the virial theorem for an elastic continuum. 

The notion of acoustic rectification (radiation-induced static strains) is strongly associated 
with that of acoustic radiation stress. Both acoustic rectification and radiation stress have 
been the subjects of considerable controversy for a large part of the present century. Lord 
Rayleigh [l] introduced the concept of acoustic radiation stress in analogy to electromagnetic 
radiation stress, but his derivation was challenged by Brillouin [Z]. Although Brillouin [Z] 
predicts the existence of an acoustic radiation stress in solids and ‘laterally confined’ fluids, 
his theory leads to a prediction of a null acoustic rectification. Gol’dberg [3] argues that the 
radiation stress in ‘laterally unconfined’ fluids is zero and, inferentially, so is the acoustic 
rectification. Both Thurston and Shapiro [4] and Thompson and Tiersten [SI predict the 
existence of a non-zero acoustic rectification but they predict different amplitudes of the 
rectified signal. Chu and Apfel [6] identify an ‘acoustic straining’ associated with the 
radiation pressure in laterally confined fluids. Cantrell and Yost [7] show that the radiation 
stress generated by an acoustic wave propagating in a crystalline solid has an accompanying 
radiation-induced static strain for each independent propagation mode of the crystal. The 
purpose of this paper is to show that such static strains or rectifications are predicted from the 
vinal theorem for an elastic continuum. The virial theorem is statistical in nature and when 
extended to include conservative nonlinear elastic media leads to an expression directly 
involving energy-dependent quantities which define the static strain from first principles. It 
is thus more forgiving of ill-defined or speculative boundary conditions that are responsible 
in part for the confusion surrounding the subject. 

We begin by defining a quantity (we assume Einstein summation convention of repeated 
indices) 

where xi is the i-component of the momentum density of a sinusoidal acoustic wave, ai is 
the corresponding component of the particle displacement vector, and VO is a finite volume 
fixed in Lagrangian space in which xi and gi are continuous for all time. The total time- 
derivative of (1) is 
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The term riii in (2) is equal to twice the kinetic energy density T of the acoustic wave. 
Using the relations (equations of motion) 

where uij are the components of the Boussinesq (first Poila-Kirchhoff) stress tensor and aj  
are the Lagrangian coordinates, we recast (2) in the form 

We define the time-average of a quantity Q(ar, i) by 

and designate the time-averaging operation by the angular brackets ( ). We assume here 
that the quantity Q(ak. I )  is non-zero for all time and that the limit is taken at a given 
fixed spatial position ax. Time-averaging (4), we find that the term (dC/dC) vanishes for 
any value of VO as the result of the boundedness of G. Using the comnlutativity of the 
time-averaging and spatial integration operations, we obtain the virial theorem for an elastic 
continuum in the form 

where the right-hand side of (6) may be appropriately called the virial of Clarrsiu for an 
elastic continuum. 

The virial theorem may be written in a form more expedient for present purposes 
by using the identity. (aqj/aaj)ui = [a(uijui)/aaj] - uij(aui/aaj), together with Green’s 
theorem in (4). Time-averaging the resulting expression and using the distributive properties 
of the time-averaging operation we obtain 

where So is a closed  surface^ boKnding the volume Vo. We consider finite-amplitude 
acoustic plane waves propagating in a lossless medium the spatial dimensions of which 
are sufficiently large, that no reflections occur and we assume that the volume contains no 
acoustic sources. In such a lossless propagation medium the Hamiltonian is conservative 
and under the conditions delineated it is reasonable to assume that the time-averaged kinetic 
energy density ( T )  and the term (ui,(au,/aaj)) (timeaveraged product of stress and strain 
related to time-averaged potential energy density) are constant and uniform throughout the 
region of interest. If we make the reasonable assumption that (u i ju i )  is also constant in the 
region of interest, the surface integral of (7) vanishes for all closed surfaces So. We thus 
obtain from (7) 

( T )  =-A(..$) , 2  
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We now expand the Boussinesq stress v;j in (8) in terms of the displacement gradients 
(aui /aaj)  = uij  as [SI 

(9) 

where Aij8; and A;jkimn are the Huang coefficients. Transforming coordinates in (9) such that 
the transformed Lagrangian coordinate ai is always along the direction of wave propagation 
we obtain the expression [7] (no sum on E in all following equations) 

w . - A . .  t, - i jk ;  U X I  f TAijklmnUUumn ' ' " ~ 

where re, is the transformed Boussinesq stress tensor, (aP,/aa,) is the transformed 
displacement gradient, E = (d, N) is a mode index representing a wave of polarization 
a = 1,2,3 and direction of propagation N .  The constant pLc = A;jkLNjNiU;Uk where 
the N;  are the Cartesian components of N referred to lhe original coordinate system and 
the U; are the Cartesian components of the wave polarization direction referred to the 
same system. The constant p6 = -(Aijk;mnNjN~N,U;UkUm/A;jx;NjNiU;Uk) is designated 
the modal acoustic nonlinearity parameter from its appearance in  the nonlinear equations 
of elastic wave motion and serves as a quantitative masure of acoustic nonlinearity [9]. 
Performing a similar transformation on (8) we obtain the vinal theorem in the transformed 
frame as 

where the transformed kinetic energy density K = (1/2)p0(aP,/at)~ and po is the mass 
density of the unperturbed solid. 

Substituting (IO) into (11) and factoring the resulting expression we obtain the time- 
averaged expression 

(12) 

where the sound speed c, = ( p . / p ~ ) ' / ~  in (12). It is instructive to note that for the 
case where the nonlinearity parameter pe = 0, setting each braced set of terms in (12) 
independently to zero yields the relationship between the particle velocity (3 P&) and the 
displacement gradient (?P,/aal) expected for linear wakes propagating correspondingly in 
opposite directions. We expect then that for the case where ,8< is non-zero, setting the 
braced terms independently to zero yields the corresponding relationships for oppositely 
propagating nonlinear waves. We thus consider only the braced set of terms on the left in 
(12) for wave propagation along the positive a, axis and expand the terms under the square 
root in a power series to first order in the nonlinearity. We write 



- L676 Letter to the Editor 

To the same approximation used in obtaining (13) we may interchange the roles of 
(a/&) and (a/aal) in (13) by using the operator relationship 

Substituting (14) into (13) and using the distributive properties of the time-averaging 
operation, we get the expression 

The term (aP,/at) in (15) vanishes as the result of the boundedness of the displacement 
Pe. For the conservative, nonlinear system considered, here we may write the time-averaged 
total energy density (E")  = (p6/&(aP,/at)*). Substituting this expression into (E), we 
finally obtain 

The time-averaged displacement gradient (aP,/aal) is the modal acoustic radiation-induced 
static strain in the solid and is the quantitative measure of acoustic rectification. 

It is apparent from the derivation that the acoustic r.ectification arises as a consequence 
of the cubic (anharmonic) term in the potential energy expansion with respect to the 
displacement gradients (quadratic term in (9) for the expansion of stress with respect to 
the displacement gradients). The direct dependence of the static strain on the nonlinearity 
parameter in (16) means that acoustic rectification is a nonlinear phenomenon. 
Equation (16) is derived without specific regard to boundary or initial conditions since only 
energy dependent terms pertaining to effectively boundless propagation media are involved 
in the derivation. The equation is found to be in agreement with experimental data obtained 
for acoustic waves propagating along the pure longitudinal mode propagation directions of 
single crystal silicon [lo] and for propagation in vitreous silica and single crystal germanium 
[7]. An examination of previous theoretical research indicates that part of the controversy 
over the static strains can be traced either to neglecting terms corresponding to the second 
term in (15) relating the time-averaged displacement gradient to the time-averaged particle 
velocity or to imposing inappropriate boundary and initial conditions when solving for the 
static displacement directly from the nonlinear wave equation. 

Finally, the experimental confirmation of modal radiation-induced static strains together 
with the statistical nature of the virial theorem suggest a connection between acoustic 
rectification and certain thermodynamic properties of crystals expressed in terms of 
stochastic nonlinear acoustic fields.  this connection is the subject of a paper now in 
preparation [ll]. 
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